

INACG
TECHNICAL
BRIEF

This statement was prepared by Dr. Penelope Nestel and Dr. Ritu Nalubola, and was reviewed by the INACG Steering Committee.

Technical Brief on Iron Compounds for Fortification of Staple Foods

ron fortification of food is generally considered to be the best long-term strategy to increase iron intake and has been reported to contribute to iron intake among those consuming fortified foods (Samuelson et al. 2000, Osler et al. 1999, Subar et al. 1998a, 1998b, Olsson et al. 1997) in developed countries, where it has been practiced for many years. Wheat flours and breakfast cereals are the most commonly fortified foods, but maize flour (Layrisse et al. 1996) and milk (Olivares et al. 1989) are also fortified in some developing countries. Intervention trials have shown that condiments such as fish sauce, sugar, curry powder (Lynch et al. 1993), and salt (Nadiger et al. 1980) can be effectively fortified with iron and improve iron status.

The amount of iron available for absorption (bioavailability) in the gut is dependent on its solubility in gastric juice, which in turn is dependent on the chemical and physical characteristics of the compounds (size, shape, and surface area of particles) as well as on gastric acid secretion in the individual, the presence of dietary absorption enhancers or inhibitors in the meal, and the iron status of the individual. This technical brief summarizes information on the iron fortificants currently available to fortification programs, and it can be used as a guide for deciding which iron fortificant to use as well as the maximum level to add to the food vehicle. Iron fortificants for which there are no data on efficacy and feasibility (cost efficacy) are not discussed.

Table 1 shows the characteristics of commonly used iron fortificants and Table 2 the technical specifications for these compounds. The preferred and optional iron compounds normally used to fortify cereals and condiments, based on relative bioavailability and sensory evaluations of the fortified food, are shown in **Table 3.** Because ambient environmental conditions can affect the sensory characteristics of food, and because acceptability criteria can vary by country or cultural group. fortified foods must be tested for sensory changes after different storage times and after cooking as part of program development. **Table 4** shows the available data for upper-level sensory thresholds in wheat flour given ambient environmental conditions. A lack of data prevented the compilation of such information for foods other than wheat flour. Because the bioavailability of the iron is essential to successful fortification programs, the addition of an iron absorption enhancer can be considered. **Table 5** discusses two options for optimizing iron bioavailability. The names and contacts for some of the manufacturers and suppliers of the iron compounds discussed in this brief are listed in Table 6.

Table 1. Characteristics of Commonly Used Iron Fortificant Compounds

Fortificant	Approximate iron content (%)	Average relative bioavailability (RBV)	Potential for adverse sensory changes ^a	Cost ^b (\$/kg)	Cost ^c (\$/kg Fe)	Cost (\$/kg biovailable Fe) ^c
Freely water soluble Dried ferrous sulfate	32	100	High	2.40	1.00	1.00
Poorly water soluble/soluble in dilute acid						
Ferrous fumarate	33	100	Low	3.00	1.21	1.21
Water insoluble/poorly soluble in dilute acid	1					
Electrolytic iron	98	50	Negligible	6.70	0.91	1.82
H-reduced iron	97	13-148	Negligible	3.25	0.45	0.30-3.44
CO-reduced (sponge) iron	97	No data	Negligible	6.60	0.91	NA°
Chelates						
Sodium iron EDTA	13	150–300	Medium to low	6.50-8.70	6.67-8.92	2.22-5.95

Table 2. Technical Specifications for Iron Compounds

Specification	Ferrous sulfate	Ferrous fumarate	Electrolytic
Color	Dried—white to greenish-white or off-white; hydrated—blue-green	Reddish-orange to red-brown	Dark gray
Form	Dried—fine powder with I water of hydration; hydrated—about 7 waters of hydration	Powder—may contain soft lumps that produce a yellow streak when crushed	Magnetic powder that dissolves in dilute mineral acids
Odor	None or almost none	None	None
Assay/purity	86.0-89.0%	97.0-101.0%	Min 97.0%; 98.2% Fe typical
Iron content	31.6-32.7%	31.9-33.2%	ND
Ferric iron	NA	Max 2.0%	NA
Acid-insoluble substances	Max 0.05%	ND	Max 0.2%; 0.05 typical
Water-insoluble matter	Max 0.5%	ND	ND
Loss on drying	Max 3.0%	Max 1.5%	ND
Hydrogen loss	ND	1%	1.5% typical
Arsenic	Max 3 ppm	Max 3 ppm	Max 4 ppm
Carbon, total	ND	ND	0.02% typical
Chloride	ND	ND	NA
Lead	Max 10 ppm	10 ppm	Max 0.002%; < 0.001 typical
Manganese	ND	ND	0.004% typical
Mercury	Max 3 ppm	Max 3 ppm	Max 2 ppm
Nitrogen	ND	ND	0.005% typical
Oxygen	ND	ND	ND
Phosphorus	ND	ND	0.002% typical
Silicon	ND	ND	0.003% typical
Sulfate/sulfur	ND	Max 0.2%	0.008% typical
EDTA	NA	NA	NA
All other	ND	ND	0.07% typical
Particle size	USP mesh no. 325: 85% of particles are $<$ 45 $\mu \mathrm{m}$		USP mesh no. 325: 39% <10 μ m, 35% 10–20 μ m, 16% 20–30 μ m, 8% 30–44 μ m
Aerobic bacteria	Max 1000/g	ND	ND
Manufacturer	Dr. Paul Lohmann GmbH	Jost Chemical; Dr. Paul Lohmann GmbH	OMG America, Inc.
Suppliers of iron (not iron in premix)	Hoffmann-La Roche; Mallinckrodt Inc.; Dr. Paul Lohmann GmbH	Jost Chemical; Mallinckrodt, Inc.; Dr. Paul Lohmann GmbH	OMG America, Inc.

Note: NA = not applicable; ND = no data.

Note: NA = not available.

^a Ferrous sulfate promotes the oxidation of fat naturally found in flour during storage and results in rancidity.

^b These figures represent average costs. Costs may vary with supplier, region, and/or quantity purchased.

^c Relative to dried sulfate = 1.0, for the same level of total iron.

^d Guidelines for Iron Fortification of Cereal Food Staples (SUSTAIN 2001).

^e NA as RBV unknown.

Comments

Although the heptahydrate form of ferrous sulfate has been used as the reference standard in bioavailability studies, the dried form is preferable because the heptahydrate form can cause color and spotting problems. Encapsulation using a coating such as hydrogenated oils, maltodextrin, or ethyl cellulose may prevent or retard negative sensory changes, but the influence of the various encapsulation methods on iron bioavailability and efficacy in fortification programs is not known. Encapsulated compounds cost more than noncapsulated compounds. Codex approved.

Cause fewer unacceptable sensory changes than water-soluble compounds but have a similar, or slightly lower, RBV depending on how well they dissolve in the gastric juice during digestion.

Encapsulation using a coating such as hydrogenated oils, maltodextrin, or ethyl cellulose may prevent or retard negative sensory changes, but the influence of the various encapsulation mehods on iron bioavailability and efficacy in fortification programs is not known. Encapsulated compounds cost more than noncapsulated compounds. Codex approved.

Powder of choice for food fortification.^d Codex approved. Insufficient information available to decide on its usefulness in fortification. Codex approved. Insufficient information available to decide on its usefulness in fortification.

Approved for food fortification by the Joint FAO/WHO Expert Committee on Food Additives (1999) in supervised programs in areas with a high prevalence of iron deficiency at a maximum intake of 0.2 mg iron/kg body weight per day. The major advantage of sodium iron EDTA over other fortification compounds is that it prevents iron binding to phytic acid.

Hydrogen reduced	CO reduced	Sodium iron EDTA
Gray-black	Gray	Brownish-yellow
Magnetic powder that dissolves in dilute mineral acids	Magnetic powder that dissolves in dilute mineral acids	Powder
None	None	None
96.0-100.5% Fe	ND	ND
98+%	99%	NA
NA	NA	12.5-14.0%
Max 1.25%	ND	ND
ND	ND	Max 0.1%
ND	ND	ND
Max 1.75%	0.44%	ND
Max 8 ppm	Max I ppm	Max 3 ppm
0.05-0.15%	0.02%	ND
NA	NA	Max 0.05%
Max 10 ppm	Max 0.001%	Max 0.001%
ND	0.02%	ND
Max 5 ppm	Max I ppm	ND
ND	ND	ND
0.40-0.75%	ND	ND
0.025%	0.0015%	ND
ND	0.13%	ND
0.006-0.008%	0.006%	Max 0.2%
NA	NA	66.0-71.0%
ND	0.50%	ND
USP mesh no. 325: 95% $<$ 45 μm	USP mesh no. 325: 95% < 45 μ m; mesh no. 300: 95% < 50 μ m; mesh no. 100: 95% < 150 μ m	ND
ND	ND	ND
Pyron Corp; Quebec Metal Powders, Ltd.	Höganäs AB	Dr. Paul Lohmann GmbH; Akzo Nobel Chemicals
Mallinckrodt, Inc.	American International Chemical	Dr. Paul Lohmann GmbH; Akzo Nobel Chemicals

Table 3. Potential Use of Different Iron Forms in the Fortification of Cereals, Condiments, and Other Foods

Product	Extraction rate (%)	Preferred iron compound	Optional iron compounds
Cereals ^a			
Whole-wheat flour (atta)	97	Sodium iron EDTA ^b	Electrolytic iron, ferrous fumarate
All-purpose flour ^c	75	Electrolytic iron	Ferrous fumarate
Bread flour	75	Dried ferrous sulfate	Electrolytic iron, ferrous fumarate
Semolina	60–65	Dried ferrous sulfate	Electrolytic iron, ferrous fumarate
Cake flour	50-55	Electrolytic iron	Ferrous fumarate
Pastry flour	45	Electrolytic iron	Ferrous fumarate
Corn flour/nixtamalized corn flour/ maize meal	75–95	Electrolytic iron (low extraction); Sodium-iron EDTA (high extraction)	Ferrous fumarate (low extraction)
Condiments ^d			
Fish sauce ^e	NA	Sodium iron EDTA	
Sugar	NA	Sodium iron EDTA	
Curry powder	NA	Sodium iron EDTA	
Salt ^f	NA	Ferrous fumarate	
Other ^g			
Powdered milk	NA	Ferrous sulfate	

Note: NA = not applicable.

Table 4. Upper-level Sensory Thresholds (ppm) for Iron Fortificants Added to Wheat Flour

	Wheat flour stored up to 3 months		
	High temperature (30–40 °C), high relative humidity (70–80%)	Low-moderate temperature (20–30 °C), low relative humidity (<50%)	
Ferrous sulfate	30a	40 ^b	
Ferrous fumarate	60°	NA	
Electrolytic iron	66°	NA	
H-reduced iron	66°	88 ^d	
CO-reduced iron	NA	NA	
Sodium iron EDTA	15ª	NA	

Note: NA = published data or study results not available.

Table 5. Optimizing Iron Bioavailability

Because the bioavailability of water-insoluble iron powders is lower than that of freely soluble ferrous sulfate, double the amount of water-insoluble iron should be added so long as it does not exceed the level that will result in organoleptic changes (see Table 4) (Hurell 1999). For example, add 50 ppm electrolytic iron instead of 25 ppm ferrous sulfate.

Ascorbic acid is an effective enhancer of iron absorption. Besides being dose dependent, the enhancing effect of ascorbic acid also depends on the form and concentration of the iron fortificant in the food and the amount of iron absorption inhibitors (phytic acid and polyphenols) in the meal. It can increase iron absorption from food fortified with ferrous sulfate. Published studies suggest that a significant increase in iron absorption can be expected when the weight ratio of ascorbic acid to iron (from ferrous sulfate) is about 6:1 (molar ratio of 2:1) (Lynch, personal communication, 2001). It is important to note, however, that the above studies did not include meals containing large amounts of phytic acid or phenolic compounds. Thus caution should be applied in using this ratio for meals with large amounts of phytic acid or phenolic compounds. The extent to which ascorbic acid can enhance the absorption of ferrous fumarate or elemental iron powders, especially in infants, is not fully understood (Lynch, personal communication, 2002).

Ascorbic acid is very susceptible to losses during storage and food preparation, which limits its use as an iron absorption enhancer. Storage losses can be unacceptably high, particularly under hot and humid conditions. The use of appropriate packaging materials can prevent much of the ascorbic acid degradation, but the cost of sophisticated packaging is often prohibitive. Vitamin C is not added to iron-fortified staple cereal flours because much of the vitamin C would likely be lost during storage and cooking.

Sodium EDTA is an accepted food additive in many countries that is stable during storage and food preparation. It can also be used as an iron absorption enhancer (Lynch et al. 1993), although the enhancing effect has been demonstrated only for ferrous sulfate. Based on available data, iron absorption from foods fortified with ferrous sulfate will be enhanced at a molar ratio of sodium EDTA to iron of about 0.5:1–1.1. While this effect can probably also be expected with other water-soluble iron compounds, whether sodium EDTA enhances the absorption of less soluble iron compounds remains unknown.

^aBased on information from Clydesdale and Wiemer (1985), stability trials in Sri Lanka (Gooneratne et al. 1996), and unpublished investigations in Central America by INCAP.

bfood-grade NaFeEDTA is commecially available with production planned according to orders.

Because ferrous sulfate is appropriate only for flours that are used within I-2 months of production, and because all-purpose flour for home use may not be used within this time, electrolytic rather than dried ferrous sulfate is listed as the preferred iron compound.

dReviewed by INACG (Lynch et al. 1993).

eThuy et al. (2001).

Sattarzadeh and Źlotkin (1999).

gOlivares et al. (1989) and Stekel et al. (1988).

^aAlvarado et al. (unpublished).

^bBarrett and Ranum (1985).

Gooneratne et al. (1996).

dRubin et al. (1977)

Table 6. Manufacturers and Suppliers

Akzo Nobel Chemicals pte. Ltd. 510 Thomson Road #17-00 SLF Building Singapore 298135 Ph: +65 2581 1333 Fax: +65 358 0659 Website: www.Dissolvine.com

American International Chemical 17 Strathmore Road

Natick, MA 01760 Ph: (508) 655 5805/(800) 238 0001 Fax: (508) 655 0927 Website: www.aicma.com

BASF, Inc. 6700 Ludwigshafen-Rhein Ludwigshafen Germany Ph: +49 621 600 Fax: +49 622 525

Website: www.basf.com

Hoffmann-La Roche CH-4002, Basel Switzerland Ph: +61 688 IIII Fax: +61 691 9600 Website: www.roche.com

Höganäs AB S-263 83 Höganäs Sweden Ph: +46 42 33 80 00 Fax: +46 42 33 81 50 Website: www.hoganas.com

Jost Chemical 8130 Lackland Rd. St. Louis, MO 63114 Ph: (314) 428 4300 Fax: (314) 428 4366 Website: www.jostchemical.com Dr. Paul Lohmann GmbH KG Chemische Fabrik, Haupstr. 2 31860 Emmerthal Germany Ph: +49 5155 63140 Fax: +49 5155 63118

Website: www.lomapharm.de

Mallinckrodt, Inc.
Specialty Chemicals Division
675 McDonnell Blvd.
P.O. Box 5840
St. Louis, MO 63134
Ph: (314) 654 6065/(800) 554 5343
Fax: (314) 654 6527
Website: www.mallinckrodt.com

OMG America, Inc. 50 Public Square, Ste. 3500 Cleveland, OH 44113 Ph: (216) 781 0083 Fax: (216) 781 1502 Website: www.omgi.com

Pyron Corporation (Div. of Zemex Corporation) P.O. Box 310 5950 Packard Road Niagara Falls, NY 14304 Ph: (716) 285 3451 Fax: (716) 285 3454

Quebec Metal Powders, Ltd. 770 Sherbrooke Street West Suite 1800 Montreal, Quebec H3A IGI Canada Ph: (514) 288 8400 Fax: (514) 288 1333 Website: www.qmp-powders.com

Note: Other suppliers are available internationally and possibly locally.

References

Alvarado M, De Leon LF, Dary O. Technical and economical evaluation of wheat flour fortification with different iron compounds. Nutrition Institute of Central America and Panama (INCAP), unpublished report. No date.

Barret F, Ranum P. Wheat and blended cereal foods. In: Clydesdale FM, Wiemer K, eds. Iron fortification of foods. Orlando, FL: Academic Press, 1985

Clydesdale FM, Wiemer KL. Iron fortification of foods. Orlando, FL: Academic Press, 1985

FAO/WHO Expert Committee on Food Additives. Compendium of food additive specifications (Addendum 7). Joint FAO/WHO Expert Committee on Food Additives 53rd Session, Rome, I–10 June 1999. FAO Food and Nutrition Papers No. 52. Rome: Food and Agriculture Organization of the United Nations, 1999.

Gooneratne J, Mudalige R, Nestel P, Purvis G. Product evaluation using iron-fortified wheat flour. Ceylon | Med Sci 1996;39:23–34

Hurell R, ed. The mineral fortification of food. Leatherhead, UK: Leatherhead Publishing, 1999

Layrisse M, Chaves JF, Mendez-Castellano, et al. Early response to the effect of iron fortification in the Venezuelan population. Am J Clin Nutr 1996;64:903–907

Lynch SR, Hurrell RF, Bothwell TH, MacPhail. Iron EDTA for food fortification. Washington, DC: International Nutritional Anemia Consultative Group/ILSI Press, 1993

Nadiger HA, Krishnamachari KA, Naidu AN, et al. The use of common salt (sodium chloride) fortified with iron to control anaemia: results of a preliminary study. Br | Nutr | 1980;43:45–51

Olivares M, Walter T, Hertrampf E, et al. Prevention of iron deficiency by milk fortification: the Chilean experience. Acta Paediatr Scand 1989;361(suppl):109–113

Olsson KS, Vaisanen M, Konar J, Bruce A. The effect of withdrawal of food iron fortification in Sweden as studied with phlebotomy in subjects with genetic hemochromatosis. Eur J Clin Nutr 1997;51:782–786

Osler M, Milman N, Heitmann BL. Consequences of removing iron fortification of flour on iron status among Danish adults: some longitudinal observations between 1987 and 1994. Prev Med 1999;29:32–36

Rubin SH, Emodi A, Scialpi L. Micronutrient additions to cereal grain products. Cereal Chem 1977;54:895–904

Samuelson G, Lonnerdal B, Kempe B, et al. A follow-up study of serum ferritin and transferrin receptor concentrations in Swedish adolescents at age 17 age 15. Acta Paediatr 2000;89:1162–1168

Sattarzadeh M, Zlotkin SH. Iron is well absorbed by healthy adults after ingestion of double-fortified (iron and dextran-coated iodine) table salt and urinary iodine excretion is unaffected. | Nutr 1999;129:117–121

Stekel A, Olivares M, Cayazzo M, et al. Prevention of iron deficiency by milk fortification. II. A field trial with a full-fat acidified milk. Am J Clin Nutr 1988;47:265–269

Subar AF, Krebs-Smith SM, Cook A, Kahle LL. Dietary sources of nutrients among US adults, 1989–91. J Am Diet Assoc 1998;98:537–547 (a)

Subar AF, Krebs-Smith SM, Cook A, Kahle LL. Dietary sources of nutrients among US children, 1989–91. Pediatrics 1998;102:913–923 (b)

SUSTAIN. Guidelines for iron fortification of cereal food staples. Washington, DC: SUSTAIN, 2001. Available at http://www.sustaintech.org. Accessed April 16, 2002

Thuy PV, Berger J, Davidsson L, et al. Regular consumption of NaFeEDTA-fortified fish sauce improved hemoglobin in anemic Vietnamese women. Abstract presented at INACG Symposium, February 15–16, 2001, Hanoi.

The International Nutritional Anemia Consultative Group (INACG) is dedicated to reducing the prevalence of iron deficiency anemia and other nutritionally preventable anemias worldwide. It sponsors international meetings and scientific reviews and convenes task forces to analyze issues related to etiology, treatment, and prevention of nutritional anemias. Examination of these issues is important to the establishment of public policy and action programs.

INACG Steering Committee

Dr. John Beard Pennsylvania State University, USA

Dr. Frances R. Davidson, Secretary
Dr. Lena Davidsson, Chair
U.S. Agency for International Development, USA
Swiss Federal Institute of Technology, Switzerland

Dr. Eva Hertrampf Micronutrients Lab, INTA, Chile
Dr. Marian Jacobs University of Cape Town, South Africa
Dr. Sean Lynch Eastern Virginia Medical School, USA
Dr. Rebecca J. Stoltzfus The Johns Hopkins University, USA

Dr. Olivia Yambi UNICEF- ESARO, Kenya

INACG Secretariat Staff

Suzanne S. Harris, Ph.D. Veronica I. Triana, MPH

This publication is made possible by support from Micronutrient Global Leadership, a project of the Office of Health, Infectious Disease and Nutrition, Bureau for Global Health, U.S. Agency for International Development, under Cooperative Agreement Number HRN-A-00-98-00027-00.

May 2002 Printed in the United States of America

Additional copies of this and other INACG publications are available free of charge to developing countries and for US\$3.50 to developed countries. Copies can be ordered from the INACG Secretariat:

INACG Secretariat
ILSI Human Nutrition Institute
One Thomas Circle, NW
Ninth Floor

Tel: (202) 659-9024
Fax: (202) 659-3617
Email: hni@ilsi.org
Internet: http://inacg.ilsi.org

Washington, DC 20005 USA

The ILSI Research Foundation's Human Nutrition Institute serves as the INACG Secretariat.